(三)假言命题及其推理
假言命题是断定事物情况之间条件关系的命题。假言命题中,表示条件的肢命题称为假言命题的前件,表示依赖该条件而成立的命题称为假言命题的后件。假言命题因其所包含的联结词的不同而具有不同的逻辑性质。
1.充分条件假言命题及其推理
充分条件的假言命题是指前件是后件的充分条件的假言命题。
充分条件假言命题联结词的语言标志通常是:“如果……那么……”、“只要……就……”、“若……必…”等等。充分条件假言命题的逻辑公式是:如果P,那么q;逻辑上则表示为:p→q(读作“P蕴涵q”)。
充分条件假言判断标准形式是:“如果P,那么q”,其真假关系如下:
充分条件假言推理有两条规则:
(1)肯定前件就要肯定后件,否定后件就要否定前件。
(2)否定前件不能否定后件,肯定后件不能肯定前件。
2.必要条件假言命题及其推理
必要条件的假言命题是指前件是后件的必要条件的假言命题。所谓前件是后件的必要条件是指:如果不存在前件所断定的情况,就不会有后件所断定的事物情况,即前件所断定的事物情况的存在,对于后件所断定的事物情况的存在来说是必不可少的。
表达必要条件假言命题的联结词有“只有……才”,“不……(就)不……”,“没有……没有……”等。
我们一般把必要条件假言命题表述成如下形式:只有P,才q。逻辑上则表示为:P←q(读作“P反蕴涵q”)。
必要条件假言判断标准形式是:“只P,才q”,其真假关系如下:
必要条件假言推理也相应有两条规则:
(1)否定前件就要否定后件,肯定后件就要肯定前件。
(2)肯定前件不能肯定后件,否定后件不能否定前件。
3.充分必要条件假言命题及其推理
表达充分必要条件假言命题的联结词有:“只要而且只有……才……”,“若……则……且若不……则不……”,“当且仅当……则……”等等。我们一般将之表示为如下形式:当且仅当P,则q。逻辑上则表示
为:p↔q(读作“P等值于q”)。
(四)负命题及其推理
1.负命题
通过对原命题断定情况的否定而作出的命题,就叫做负命题。
负命题的逻辑公式是:如果用P表示原命题,那么,负命题即为“并非P”。其真假关系如表:
2.负命题的种类
任何一个命题都可对其进行否定而得到一个相应的负命题。简单的性质命题的负命题实质上即为对当关系中的相应矛盾命题。
SAP的负命题是SOP;SOP的负命题是SAP;SEP的负命题是SIP;SIP的负命题是SEP。